Soda ash & the environment

How environmental considerations influence both soda ash supply & demand

Marguerite Morrin, Executive Director, Chlor-alkali/Soda Ash, IHS Markit

AIGMF, India, May 25, 2018
How have environmental concerns effected the soda ash market?

• Chinese production and demand effected by environmental restrictions
 – Raw material price changes effect costs
 – Related markets also impacted

• Global soda ash supply/demand dynamics shifting

• New environmentally focused demand sectors

• Old demand sectors driven by environmental concerns
Supply
Impacts of environmental concerns on supply
China has been focusing on environmental concerns

- China government’s move to greener economy
- Reducing pollution through government checks
- Implementing stricter controls on industrial capacity
- Incentivising air/water waste emission reduction
- Decrease energy consumption by 15% by 2020
- Reduce VOC emissions by 10% by 2020
China has been focusing on environmental concerns

- Pilot round of checks in Hebei province in Dec 2015
- Followed by further checks throughout 2016/2017
- Checks caused impacts to Soda Ash production
- Costs increased: restrictions in raw material output
- Tightness in Soda Ash resulted in price increases
- Effects worse in high demand areas

Source: IHS Markit
In the past, plants in China have closed due to environmental reasons.
CHINA GLASS
• Shahe, in the city of Xingtai, Hebei province is China’s ‘glass capital’

• 2.9MMT float-glass capacity closed in Shahe in 2017

• There are still 10~20 float-glass lines facing closure due to the failure to meet environmental standards

Hebei is under great Environmental Pressure
Flat glass faces tighter environmental standards

• Flat Glass production was 39.6 MMT in 2017
 – Consumption of 7.9 MMT soda ash

• New, tighter, environmental standards, with respect to air pollutants, to be imposed on flat glass producers from June 1, 2018 in ‘26 Cities’

<table>
<thead>
<tr>
<th>Unit</th>
<th>Current</th>
<th>From June 1, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen Oxides</td>
<td>mg/m³</td>
<td>700</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>mg/m³</td>
<td>400</td>
</tr>
<tr>
<td>Particulate Matter</td>
<td>mg/m³</td>
<td>50</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL IMPACT ON COSTS
China restrictions impact on costs

Solvay Process

1. 2 NaCl Brine → 2 NaHCO₃
2. Limestone → CO₂
3. 2NH₃
4. 2 NH₄Cl → Soda Ash

Overall Stoichiometric Reaction:

2 NaCl + CaCO₃ → Na₂CO₃ + CaCl₂

Hou Process

1. 2 NaCl Brine → 2 NaHCO₃
2. Limestone → CO₂
3. CaO
4. 2NH₃

Overall Stoichiometric Reaction:

2NaCl + CO₂ + 2NH₃ + H₂O → Na₂CO₃ + 2NH₄Cl
Environmental restrictions in China helped push up prices from Jan 2016 to Dec 2017

- **Thermal coal**: ¥399 to ¥748 per ton
- **Coke**: ¥629 to ¥2204 per ton
- **Metallurgical coal**: 536¥ to 1418¥ per ton
- **Power**: ¥0.47/kWh to ¥0.60/kWh
- **Steam**: ¥62.1 to ¥107.4 per ton
- **Ammonia**: ¥326 to ¥451 per ton
- **Steel**: output grew 5.7% in 2017
China fertiliser restrictions impact

Solvay Process

1. 2 NaCl Brine → 2NaHCO₃ → CO₂ → 2NH₃ → 2 NH₄Cl → Soda Ash → 2 NH₄Cl → 2NaHCO₃ → CO₂ → 2NaCl Brine

2. Limestone → CaO → Calcium Chloride

Overall Stoichiometric Reaction:

2 NaCl + CaCO₃ → Na₂CO₃ + CaCl₂

Hou Process

1. 2 NaCl Brine → 2NaHCO₃ → CO₂ → 2NH₃ → 2 NH₄Cl → Soda Ash

2. Limestone → CaO

Overall Stoichiometric Reaction:

2NaCl + CO₂ + 2NH₃ + H₂O → Na₂CO₃ + 2NH₄Cl

Ammonium Chloride by-product needs a market

Confidential. © 2018 IHS Markit™. All Rights Reserved.
China is aiming for 0% growth in fertilizers due to eutropification: what's the impact?

- **Urea market**
 - Size: 91 MMT
 - Urea is China’s main fertilizer
 - Demand slumped; Op Rates: 61%
 - Price stayed high due to high costs

- **NH₄Cl Market**
 - Size: 15 MMT
 - Urea drives NH₄Cl prices
 - NH₄Cl competes with urea
 - NH₄Cl prices help cover NH₃ cost

- NH₄Cl competes with urea
- NH₄Cl prices help cover NH₃ cost
- Urea is China’s main fertilizer
- Demand slumped; Op Rates: 61%
- Price stayed high due to high costs
Demand
Impacts of environmental concerns on demand
Lithium is one world’s hottest commodities driven by environmental imperatives

- Solar energy production costs falling
- EV uptake drives demand in at-home solar power generation
- Growing at home, and utility scale solar power, requires storage
- Li-Ion batteries fast growing EV propulsion solution
- Li-Ion batteries fast growing energy storage solution
- EV uptake drives demand in Lithium batteries

Lithium is one world’s hottest commodities driven by environmental imperatives.
Soda ash demand from this sector is small and its influence depends on location

SAM
- Soda ash demand from LiCO$_3$ ~ 183,000 mt
- % of SAM demand ~ 7.0

NAM
- Soda ash demand from LiCO$_3$ ~ 10,000 mt
- % of NAM demand ~ 0.2%

China
- Soda ash demand from LiCO$_3$ ~ 210,000 mt
- % of China demand ~ 0.6%

Australia
- Soda ash demand from LiCO$_3$ = 0 mt
- Lithium exported as Spodumene Conc
- Plans for LiOH plant
As future of power and transportation changes, it will push demand for soda ash

Increasing presence of solar power will require more solar glass – requires **soda ash**

EVs require Li-ion batteries and window glass, driving **soda ash** demand

Li-ion battery production requires Li Carbonate supply – in turn requires **soda ash**
Container glass
Impacts of environmental concerns on demand for soda ash
Container glass demand for soda ash is impacted by the environment

- Historically container glass was no. 1 use for soda ash
- Increased use of cullet decreases need for soda ash
- Competition from other packaging materials mainly PET
- Environmental concerns becoming more important – is glass green?
- Alcoholic beverages as niche packaging for glass
- Light weighting, lower soda ash use per bottle
Weight for weight glass production produces less CO$_2$ than PET production

US EPA greenhouse gas output for glass production

US EPA greenhouse gas output for PET production

Source: IHS Markit © 2018 IHS Markit
Bottle for bottle, PET production produces less CO₂ than glass production

US EPA greenhouse gas output for glass production

- Virgin Glass
- 100% Recycled Glass

US EPA greenhouse gas output for PET production

- 3% Recycled PET
- 100% Recycled PET

- But doesn’t consider other greenhouse gases
- Standard LCA cuts off impacts after 100 years
- Plastic emits significant CO₂ after 100 years
So why is glass seen to be better for the environment?

- Other environmental impacts – resource depletion, water consumption
- Glass infinitely recyclable
- Glass inert and non porous
- Some of these other environmental impacts are higher for PET
- PET often recycled into lower grade material
- PET thought to leach – public perception important
- Glass shatters and breaks up
- Issue of plastic collecting in the sea
Good example is FEVE’s view of Europe’s circular glass economy

- 85% of Europeans prefer glass
- 73% of Europeans think glass is safer packaging for drinks
- 74% of glass bottles are recycled in Europe
- 580kg CO₂ saved per ton of cullet in Europe
- Glass is 100% recyclable
Conclusions

2017 – 2018 saw significant shifts in soda ash supply-demand dynamics

Outcomes of these shifts were not as expected due to new drive for environmental stability in China

New environment-driven demand sectors are altering soda ash market

Cultural changes to environment are also having an impact on soda ash demand